4.2 Article

PKL01, an Ndr kinase homologue in plant, shows tyrosine kinase activity

Journal

JOURNAL OF BIOCHEMISTRY
Volume 152, Issue 4, Pages 347-353

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jb/mvs075

Keywords

autophosphorylation; dual-specificity kinase; Lotus japonicus; Ndr kinase; protein tyrosine kinase

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan
  2. Grants-in-Aid for Scientific Research [23501296] Funding Source: KAKEN

Ask authors/readers for more resources

Protein phosphorylation by protein tyrosine (Tyr) kinases plays important roles in a variety of signalling pathways in cell growth, differentiation and oncogenesis in animals. Despite the absence of classical Tyr kinases in plants, a similar ratio of phosphotyrosine residues in phosphorylated proteins was found in Arabidopsis thaliana as in human. However, protein kinases responsible for tyrosine phosphorylation in plants except some dedicated dual-specificity kinases still remain unclear. In this study, we found that PKL01, a nuclear Dbf2-related (Ndr) kinase homologue in Lotus japonicus, was autophosphorylated at a tyrosine residue when it was expressed in Escherichia coli, but kinase-dead mutant of PKL01 was not. Tyrosine phophorylation site in PKL01 was identified as Tyr-56 by LC-MS/MS analysis. Recombinant PKL01, which had been dephosphorylated by an alkaline phosphatase, could be phosphorylated again at the Tyr residue when it was incubated with ATP. Furthermore, other Ndr kinases in plants and PKL01 phosphorylated on Tyr residues in the exogenous substrates such as poly(Glu, Tyr)(4:1) and casein. Therefore, the Ndr kinases in plants, which had been assumed as protein serine (Ser)/threonine (Thr) kinases, turned out to be dual-specificity kinases responsible for phosphorylation of Tyr residues and Ser/Thr residues in plant proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available