4.2 Article

Molecular mechanisms of the LPS-induced non-apoptotic ER stress-CHOP pathway

Journal

JOURNAL OF BIOCHEMISTRY
Volume 147, Issue 4, Pages 471-483

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jb/mvp189

Keywords

CHOP; ER stress; PERK; XBP1; LPS

Funding

  1. Ministry of Education, Culture, Sports, Science, and Technology of Japan [18590301, 20590310, 19790563]
  2. Takeda Science Foundation
  3. Mitsubishi Pharma Research Foundation
  4. Grants-in-Aid for Scientific Research [20590310, 19790563, 18590301] Funding Source: KAKEN

Ask authors/readers for more resources

The expression of C/EBP homologous protein (CHOP), which is an endoplasmic reticulum (ER) stress-induced transcription factor, induces apoptosis. Our previous study demonstrated that lipopolysaccharide (LPS)-induced CHOP expression does not induce apoptosis, but activates a pro-IL-1 beta activation process. However, the mechanism by which CHOP activates different pathways, depending on the difference in the inducing stimuli, remains to be clarified. The present study shows that LPS rapidly activates the ER function-protective pathway, but not the PERK pathway in macrophages. PERK plays a major role in CHOP induction, and other ER stress sensors-mediated pathways play minor roles. The induction of CHOP by LPS was delayed and weak, in comparison with CHOP induction by ER stress-inducer thapsigargin. In addition, LPS-pre-treatment or overexpression of ER chaperone, IgH chain binding protein (BiP), prevented ER stress-mediated apoptosis. LPS plus IFN-gamma-treated macrophages produce a larger amount of nitric oxide (NO) in comparison with LPS-treated cells. Treatment with the NO donor, SNAP (S-nitro-N-acetyl-dl-penicillamine), induces CHOP at an earlier period than LPS treatment. The depletion of NO retards CHOP induction and prevents apoptosis in LPS plus IFN-gamma-treated cells. We concluded that apoptosis is prevented in LPS-treated macrophages, because the ER function-protective mechanisms are induced before CHOP expression, and induction level of CHOP is low.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available