4.2 Article

Impaired chemotaxis and cell adhesion due to decrease in several cell-surface receptors in cathepsin E-deficient macrophages

Journal

JOURNAL OF BIOCHEMISTRY
Volume 145, Issue 5, Pages 565-573

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/jb/mvp016

Keywords

aspartic proteinase; cathepsin E; knockout; macrophages; chemotaxis; cell adhesion

Ask authors/readers for more resources

Cathepsin E is an endo-lysosomal aspartic proteinase exclusively present in immune system cells. Previous studies have shown that cathepsin E-deficient (CatE(/)) mice display aberrant immune responses such as atopic dermatitis and higher susceptibility to bacterial infection. However, the mechanisms underlying abnormal immune responses induced by cathepsin E deficiency are still unclear. In this study, we found that the cell-surface levels of chemotactic receptors, including chemokine receptor (CCR)-2 and N-formyl peptide receptors (FPRs), were clearly diminished in CatE(/)macrophages compared with those in wild-type cells. Consistently, chemotaxis of CatE(/)macrophages to MCP-1 and N-formyl-methionyl-leucyl-phenylalanine was also decreased. Similar to the chemotactic receptors, the surface expressions of the adhesion receptors CD18 (integrin (2)) and CD 29 (integrin (1)) in CatE(/) macrophages were significantly decreased, thereby reducing cell attachment of CatE(/) macrophages. These results indicate that the defects in chemotaxis and cell adhesion are likely to be involved in the imperfect function of CatE(/)macrophages.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available