4.4 Article

Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels

Journal

JOURNAL OF BASIC MICROBIOLOGY
Volume 52, Issue 5, Pages 566-572

Publisher

WILEY
DOI: 10.1002/jobm.201100253

Keywords

Biofilm; Exopolysaccharide; Salinity; Cicer arietinum

Categories

Funding

  1. HEC Pakistan (Higher Education Commission Indigenous 5000 Ph.D. Fellowship Program-Batch-IV)

Ask authors/readers for more resources

Bacteria in a biofilm have a co-dependent lifestyle resulting in a harmonized and complex coordination of the bacterial cells within an exopolysaccharide (EPS) matrix. We hypothesized that biofilm formation and EPS production in salt-tolerant bacteria are helpful for plant growth improvement in saline soil, but that they are influenced differently. To investigate this hypothesis, we tested the effect of different salinity levels on the biofilm formation of the bacterial strains PAa6 (Halomonas meridiana), HT2 (Kushneria indalinina) and ST2 (Halomonas aquamarina) on different abiotic and biotic surfaces. Maximum biofilm formation was established at 1 M salt concentration. However, EPS production was maximal at 01 M NaCl stress. We also studied the effect of salt stress on EPS produced by the bacterial strains and confirmed the presence of EPS on Cicer arietinum var. CM 98 roots and in soil at different salinity levels, using Alcian blue staining. Overall, the strain PAa6 was more effective in biofilm formation and EPS production. Under saline and non-saline conditions, this strain also colonized the plant roots more efficiently as compared to the other two strains. We conclude that the strain PAa6 has the potential of biofilm formation and EPS production at different salinity levels. The presence of EPS in the biofilm helped the bacterial strains to better colonize the roots. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available