4.4 Article

Temporal bacterial diversity and detection of putative methanotrophs in surface mats of Lonar crater lake

Journal

JOURNAL OF BASIC MICROBIOLOGY
Volume 50, Issue 5, Pages 465-474

Publisher

WILEY
DOI: 10.1002/jobm.201000001

Keywords

Arthrospira; Microbial mats; Methanotrophs; Lonar Lake; 16S rRNA

Categories

Funding

  1. Department of Biotechnology, Government of India
  2. Indian Council of Medical Research, Government of India

Ask authors/readers for more resources

The phylogenetic diversity of bacterial communities in microbial mats of two different seasons from saline and hyperalkaline Lonar Lake was investigated using 16S rRNA gene library analysis. Arthrospira (Cyanobacteria) related clones (>80% of total clones) dominated libraries of both the seasons. Clear differences were found in both the seasons as the operational taxonomic units (OTUs) related to Fusibacter (LAI-1 and LAI-59) and Tindallia magadiensis (LAI-27) found in post-monsoon were not found in the pre-monsoon library. Likewise, OTUs related to Planococcus rifietensis (LAII-67), Bordetella hinzii (LAII-2) and Methylobacterium variabile (LAII-25) found in the pre-monsoon were not found in post-monsoon. The study was extended to identify methanotrophs in the surface mats. Libraries constructed with type I and type II methanotroph specific 16S rRNA gene primers showed the presence of clones (LAMI-99 and LAMII-2) closely related to Methylomicrobium buryaticum and Beijerinckiaceae family members. Denaturing gradient gel electrophoresis (DGGE) fingerprinting based on protein-coding genes (pmoA and mxaF) further confirmed the detection of Methylomicrobium sp. Hence, we report here for the first time the detection of putative methanotrophs in surface mats of Lonar Lake. The finding of clones related to organisms with interesting functional attributes such as assimilation of C-1 compounds (LAII-25, LAMI-39, LAMI-99 and LAMII-2), non-sulfur photosynthetic bacteria (LAMII-43) and clones distantly affiliated to organisms of heavily polluted environments (LAI-59 and LAMII-52), is of significant note. These preliminary results would direct future studies on the functional dynamics of microbial mat associated food web chain in the extreme environment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available