4.4 Article

NifA- and CooA-Coordinated cowN Expression Sustains Nitrogen Fixation by Rhodobacter capsulatus in the Presence of Carbon Monoxide

Journal

JOURNAL OF BACTERIOLOGY
Volume 196, Issue 19, Pages 3494-3502

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.01754-14

Keywords

-

Categories

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [Ma 1814/4-1]

Ask authors/readers for more resources

Rhodobacter capsulatus fixes atmospheric dinitrogen via two nitrogenases, Mo- and Fe-nitrogenase, which operate under different conditions. Here, we describe the functions in nitrogen fixation and regulation of the rcc00574 (cooA) and rcc00575 (cowN) genes, which are located upstream of the structural genes of Mo-nitrogenase, nifHDK. Disruption of cooA or cowN specifically impaired Mo-nitrogenase-dependent growth at carbon monoxide (CO) concentrations still tolerated by the wild type. The cooA gene was shown to belong to the Mo-nitrogenase regulon, which is exclusively expressed when ammonium is limiting. Its expression was activated by NifA1 and NifA2, the transcriptional activators of nifHDK. AnfA, the transcriptional activator of Fe-nitrogenase genes, repressed cooA, thereby counteracting NifA activation. CooA activated cowN expression in response to increasing CO concentrations. Base substitutions in the presumed CooA binding site located upstream of the cowN transcription start site abolished cowN expression, indicating that cowN regulation by CooA is direct. In conclusion, a transcription factor-based network controls cowN expression to protect Mo-nitrogenase (but not Fe-nitrogenase) under appropriate conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available