4.4 Article

Periodic Reversals in Paenibacillus dendritiformis Swarming

Journal

JOURNAL OF BACTERIOLOGY
Volume 195, Issue 12, Pages 2709-2717

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00080-13

Keywords

-

Categories

Funding

  1. Tauber Family Funds
  2. Maguy-Glass Chair in Physics of Complex Systems at Tel Aviv University
  3. NSF [PHY-0822283]
  4. Cancer Prevention and Research Institute of Texas (CPRIT) at Rice University
  5. Robert A. Welch Foundation [F-1573]
  6. Direct For Mathematical & Physical Scien
  7. Division Of Physics [1308264] Funding Source: National Science Foundation

Ask authors/readers for more resources

Bacterial swarming is a type of motility characterized by a rapid and collective migration of bacteria on surfaces. Most swarming species form densely packed dynamic clusters in the form of whirls and jets, in which hundreds of rod-shaped rigid cells move in circular and straight patterns, respectively. Recent studies have suggested that short-range steric interactions may dominate hydrodynamic interactions and that geometrical factors, such as a cell's aspect ratio, play an important role in bacterial swarming. Typically, the aspect ratio for most swarming species is only up to 5, and a detailed understanding of the role of much larger aspect ratios remains an open challenge. Here we study the dynamics of Paenibacillus dendritiformis C morphotype, a very long, hyperflagellated, straight (rigid), rod-shaped bacterium with an aspect ratio of similar to 20. We find that instead of swarming in whirls and jets as observed in most species, including the shorter T morphotype of P. dendritiformis, the C morphotype moves in densely packed straight but thin long lines. Within these lines, all bacteria show periodic reversals, with a typical reversal time of 20 s, which is independent of their neighbors, the initial nutrient level, agar rigidity, surfactant addition, humidity level, temperature, nutrient chemotaxis, oxygen level, illumination intensity or gradient, and cell length. The evolutionary advantage of this unique back-and-forth surface translocation remains unclear.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available