4.4 Article

How Escherichia coli Tolerates Profuse Hydrogen Peroxide Formation by a Catabolic Pathway

Journal

JOURNAL OF BACTERIOLOGY
Volume 195, Issue 20, Pages 4569-4579

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00737-13

Keywords

-

Categories

Funding

  1. National Institutes of Health [GM049640]

Ask authors/readers for more resources

When Escherichia coli grows on conventional substrates, it continuously generates 10 to 15 mu M/s intracellular H2O2 through the accidental autoxidation of redox enzymes. Dosimetric analyses indicate that scavenging enzymes barely keep this H2O2 below toxic levels. Therefore, it seemed potentially problematic that E. coli can synthesize a catabolic phenylethylamine oxidase that stoichiometrically generates H2O2. This study was undertaken to understand how E. coli tolerates the oxidative stress that must ensue. Measurements indicated that phenylethylamine-fed cells generate H2O2 at 30 times the rate of glucose-fed cells. Two tolerance mechanisms were identified. First, in enclosed laboratory cultures, growth on phenylethylamine triggered induction of the OxyR H2O2 stress response. Null mutants (Delta oxyR) that could not induce that response were unable to grow. This is the first demonstration that OxyR plays a role in protecting cells against endogenous H2O2. The critical element of the OxyR response was the induction of H2O2 scavenging enzymes, since mutants that lacked NADH peroxidase (Ahp) grew poorly, and those that additionally lacked catalase did not grow at all. Other OxyR-controlled genes were expendable. Second, phenylethylamine oxidase is an unusual catabolic enzyme in that it is localized in the periplasm. Calculations showed that when cells grow in an open environment, virtually all of the oxidase-generated H2O2 will diffuse across the outer membrane and be lost to the external world, rather than enter the cytoplasm where H2O2-sensitive enzymes are located. In this respect, the periplasmic compartmentalization of phenylethylamine oxidase serves the same purpose as the peroxisomal compartmentalization of oxidases in eukaryotic cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available