4.4 Article

Evidence that a Metabolic Microcompartment Contains and Recycles Private Cofactor Pools

Journal

JOURNAL OF BACTERIOLOGY
Volume 195, Issue 12, Pages 2864-2879

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.02179-12

Keywords

-

Categories

Funding

  1. NIH grant [AI088122]
  2. NSF DBIO [722538]
  3. NIH [RR11973]
  4. [GM27068]

Ask authors/readers for more resources

Microcompartments are loose protein cages that encapsulate enzymes for particular bacterial metabolic pathways. These structures are thought to retain and perhaps concentrate pools of small, uncharged intermediates that would otherwise diffuse from the cell. In Salmonella enterica, a microcompartment encloses enzymes for ethanolamine catabolism. The cage has been thought to retain the volatile intermediate acetaldehyde but allow diffusion of the much larger cofactors NAD and coenzyme A (CoA). Genetic tests support an alternative idea that the microcompartment contains and recycles private pools of the large cofactors NAD and CoA. Two central enzymes convert ethanolamine to acetaldehyde (EutBC) and then to acetyl-CoA (EutE). Two seemingly peripheral redundant enzymes encoded by the eut operon proved to be essential for ethanolamine utilization, when subjected to sufficiently stringent tests. These are EutD (acetyl-CoA to acetyl phosphate) and EutG (acetaldehyde to ethanol). Obligatory recycling of cofactors couples the three reactions and drives acetaldehyde consumption. Loss and toxic effects of acetaldehyde are minimized by accelerating its consumption. In a eutD mutant, acetyl-CoA cannot escape the compartment but is released by mutations that disrupt the structure. The model predicts that EutBC (ethanolamine-ammonia lyase) lies outside the compartment, using external coenzyme B-12 and injecting its product, acetaldehyde, into the lumen, where it is degraded by the EutE, EutD, and EutG enzymes using private pools of CoA and NAD. The compartment appears to allow free diffusion of the intermediates ethanol and acetyl-PO4 but (to our great surprise) restricts diffusion of acetaldehyde.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available