4.4 Article

Transcriptional and Metabolomic Consequences of luxS Inactivation Reveal a Metabolic Rather than Quorum-Sensing Role for LuxS in Lactobacillus reuteri 100-23

Journal

JOURNAL OF BACTERIOLOGY
Volume 194, Issue 7, Pages 1743-1746

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.06318-11

Keywords

-

Categories

Funding

  1. Marsden Fund
  2. Science Foundation Ireland [07/IN.1/B1780]
  3. Science Foundation Ireland (SFI) [07/IN.1/B1780] Funding Source: Science Foundation Ireland (SFI)

Ask authors/readers for more resources

Autoinducer-2 (AI-2)-mediated quorum sensing has been extensively studied in relation to the regulation of microbial behavior. There are, however, two potential roles for the AI-2 synthase (LuxS). The first is in the production of AI-2 and the second is as an enzyme in the activated methyl cycle, where it catalyzes the conversion of S-ribosylhomocysteine to homocysteine. The by-product of the reaction catalyzed by LuxS is (S)-4,5-dihydroxy-2,3-pentanedione, which spontaneously forms the furanones known collectively as AI-2. The mammalian gut contains a complex collection of bacterial species so a method of interspecies communication might influence community structure and function. Lactobacillus reuteri 100-23 is an autochthonous inhabitant of the rodent forestomach, where it adheres to the nonsecretory epithelium, forming a biofilm. Microarray comparisons of gene expression profiles of the L. reuteri 100-23 wild type and a luxS mutant under different culture conditions revealed altered transcription of genes encoding proteins associated with cysteine biosynthesis/oxidative stress response, urease activity, and sortase-dependent proteins. Metabolomic analysis showed that the luxS mutation affected cellular levels of fermentation products, fatty acids and amino acids. Cell density-dependent changes (log phase versus stationary phase growth) in gene transcription were not detected, indicating that AI-2 was unlikely to be involved in gene regulation mediated by quorum sensing in L. reuteri 100-23.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available