4.4 Article

Compromised Factor-Dependent Transcription Termination in a nusA Mutant of Escherichia coli: Spectrum of Termination Efficiencies Generated by Perturbations of Rho, NusG, NusA, and H-NS Family Proteins

Journal

JOURNAL OF BACTERIOLOGY
Volume 193, Issue 15, Pages 3842-3850

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00221-11

Keywords

-

Categories

Funding

  1. Department of Biotechnology
  2. Department of Science and Technology, Government of India
  3. Centre of Excellence in Microbial Biology from the Department of Biotechnology

Ask authors/readers for more resources

The proteins NusA and NusG, which are essential for the viability of wild-type Escherichia coli, participate in various postinitiation steps of transcription including elongation, antitermination, and termination. NusG is required, along with the essential Rho protein, for factor-dependent transcription termination (also referred to as polarity), but the role of NusA is less clear, with conflicting reports that it both promotes and inhibits the process. In this study, we found that a recessive missense nusA mutant [nusA(R258C)] exhibits a transcription termination-defective (that is, polarity-relieved) phenotype, much like missense mutants in rho or nusG, but is unaffected for either the rate of transcription elongation or antitermination in lambda phage. Various combinations of the rho, nusG, and nusA mutations were synthetically lethal, and the lethality was suppressed by expression of the N-terminal half of nucleoid protein H-NS. Our results suggest that NusA function is indeed needed for factor-dependent transcription termination and that an entire spectrum of termination efficiencies can be generated by perturbations of the Rho, NusG, NusA, and H-NS family of proteins, with the corresponding phenotypes extending from polarity through polarity relief to lethality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available