4.4 Article

Role of Ar1RS in Autolysis in Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus Strains

Journal

JOURNAL OF BACTERIOLOGY
Volume 194, Issue 4, Pages 759-767

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.06261-11

Keywords

-

Categories

Ask authors/readers for more resources

Autolysis plays an essential role in bacterial cell division and lysis with beta-lactam antibiotics. Accordingly, the expression of autolysins is tightly regulated by several endogenous regulators, including ArlRS, a two component regulatory system that has been shown to negatively regulate autolysis in methicillin-sensitive Staphylococcus aureus (MSSA) strains. In this study, we found that inactivation of arlRS does not play a role in autolysis of methicillin-resistant S. aureus (MRSA) strains, such as community-acquired (CA)-MRSA strains USA300 and MW2 or the hospital-acquired (HA)-MRSA strain COL. This contrasts with MSSA strains, including Newman, SH1000, RN6390, and 8325-4, where autolysis is affected by ArlRS. We further demonstrated that the striking difference in the roles of arlRS between MSSA and MRSA strains is not due to the methicillin resistance determinant mecA. Among known autolysins and their regulators, we found that arlRS represses lytN, while no effect was seen on atl, lytM, and lytH expression in both CA- and HA-MRSA strains. Transcriptional-fusion assays showed that the agr transcripts, RNAII and RNAIII, were significantly more downregulated in the arlRS mutant of MW2 than the MSSA strain Newman. Importantly, provision of agr RNAIII in trans to the MW2 arlRS mutant via a multicopy plasmid induced autolysis in this MRSA strain. Also, the autolytic phenotype in the arlRS mutant of MSSA strain Newman could be rescued by a mutation in either atl or lytM. Together, these data showed that ArlRS impacts autolysis differently in MSSA and MRSA strains.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available