4.4 Article

Pseudomonas aeruginosa Enhances Production of an Antimicrobial in Response to N-Acetylglucosamine and Peptidoglycan

Journal

JOURNAL OF BACTERIOLOGY
Volume 193, Issue 4, Pages 909-917

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.01175-10

Keywords

-

Categories

Funding

  1. NIH [5R01AI075068]

Ask authors/readers for more resources

Pseudomonas aeruginosa is an opportunistic pathogen often associated with chronic lung infections in individuals with the genetic disease cystic fibrosis (CF). Previous work from our laboratory revealed that five genes predicted to be important for catabolism of N-acetylglucosamine (GlcNAc) are induced during in vitro growth in CF lung secretions (sputum). Here, we demonstrate that these genes comprise an operon (referred to as the nag operon) and that NagE, a putative component of the GlcNAc phosphotransferase system, is required for growth on and uptake of GlcNAc. Using primer extension analysis, the promoter of the nag operon was mapped and shown to be inducible by GlcNAc and regulated by the transcriptional regulator NagR. Transcriptome analysis revealed that in addition to induction of the nag operon, several P. aeruginosa genes encoding factors critical for extracellular antimicrobial production are also induced by GlcNAc. Finally, we show that the GlcNAc-containing polymer peptidoglycan induces production of the antimicrobial pyocyanin. Based on this data, we propose a model in which P. aeruginosa senses surrounding bacteria by monitoring exogenous peptidoglycan and responds to this cue through enhanced production of an antimicrobial.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available