4.4 Article

Analysis of the Mobilization Functions of the Vancomycin Resistance Transposon Tn1549, a Member of a New Family of Conjugative Elements

Journal

JOURNAL OF BACTERIOLOGY
Volume 192, Issue 3, Pages 702-713

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.00680-09

Keywords

-

Categories

Funding

  1. ANR [MIME 2007 026-02]

Ask authors/readers for more resources

Conjugative transfer from Clostridium symbiosum to enterococci of Tn1549, which confers VanB-type vancomycin resistance, has been reported. This indicates the presence of a transfer origin (oriT) in the element. Transcription analysis of Tn1549 indicated that orf29, orf28, orfz, and orf27 were cotranscribed. A pACYC184 derivative containing 250 bp intergenic to orf29-orf30 of Tn1549 was mobilized in Escherichia coli recA::RP4::Delta nic provided that orf28 and orf29 were delivered simultaneously. These open reading frame (ORF) genes were able to promote mobilization in trans, but a cis-acting preference was observed. On the basis of a mobilization assay, a minimal 28-bp oriT was delimited, although the frequency of transfer was significantly reduced compared to that of a 130-bp oriT fragment. The minimal oriT contained an inverted repeat and a core, which was homologous to the cleavage sequence found in certain Gram-positive rolling-circle replicating (RCR) plasmids. While Orf29 was a mobilization accessory component similar to MobC proteins, Orf28 was identified as a relaxase belonging to a new phyletic cluster of the MOBp superfamily. The nick site was identified within oriT by an oligonucleotide cleavage assay. Closely related oriTs linked to mobilization genes were detected in data banks; they were found in various integrative and conjugative elements (ICEs) originating mainly from anaerobes. These results support the notion that Tn1549 is a member of a MOBp clade. Interestingly, the Tn1549-derived constructs were mobilized by RP4 in E. coli, suggesting that a relaxosome resulting from DNA cleavage by Orf28 interacted with the coupling protein TraG. This demonstrates the capacity of Tn1549 to be mobilized by a heterologous transfer system.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available