4.4 Article

Evidence of in vivo cross talk between the nitrogen-related and fructose-related branches of the carbohydrate phosphotransferase system of Pseudomonas putida

Journal

JOURNAL OF BACTERIOLOGY
Volume 190, Issue 9, Pages 3374-3380

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.02002-07

Keywords

-

Categories

Ask authors/readers for more resources

The genome of Pseudomonas putida KT2440 encodes only five recognizable proteins belonging to the phosphoenolpyruvate (PEP)-carbohydrate phosphotransferase system (PTS). Two of these PTS constituents (FruA and FruB) form a complete system for fructose intake. The other three products, encoded by ptsP (EINtr), PtsO (NPr), and ptsN (EIIA(Ntr)), comprise a branch of the system unrelated to sugar traffic but thought to have an influence on coordination of N and C metabolism. We used a genetic approach to clarify the course of high-energy phosphate through this reduced set of PTS proteins. To this end, we monitored the phosphorylation state in vivo of the EIIA(Ntr) enzyme in various genetic backgrounds and growth conditions. Our results show that the source of phosphate available to the system is PEP and that the primary flow of phosphate through the N/C-sensing PTS proceeds from PEP to EINtr to NPr to EIINtr. We also found that in the presence of fructose, unlike in the presence of succinate, EIIA(Ntr) can be phosphorylated in a ptsP strain but not in a ptsP fruB double mutant. This result revealed that the fructose transport system has the ability to cross talk in vivo with the N-related PTS branch. The data reported here thus document an unexpected connection in vivo between the sugar-dependent and sugar-independent PTSs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available