4.7 Article

CX3CR1 drives cytotoxic CD4+CD28- T cells into the brain of multiple sclerosis patients

Journal

JOURNAL OF AUTOIMMUNITY
Volume 38, Issue 1, Pages 10-19

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jaut.2011.11.006

Keywords

Multiple sclerosis; T cells; Immunosenescence; Fractalkine; CX(3)CR1

Categories

Funding

  1. Hasselt University

Ask authors/readers for more resources

Immunosenescence, or ageing of the immune system, contributes to the increased morbidity and mortality seen in the elderly population. Premature immunosenescence is shown to occur in a subgroup of patients with autoimmune diseases. One of the main characteristics of immunosenescence is the expansion of CD4(+)CD28(-) T cells in the blood. In this study, we investigate the potential contribution of these cells to disease processes in a subgroup of multiple sclerosis (MS) and rheumatoid arthritis (RA) patients. Characterization of CD4(+)CD28(-) T cells in patients and healthy controls reveals that they have an inflammation-seeking effector-memory T cell phenotype with cytotoxic properties, as they expel cytotoxic granules in response to a polyclonal stimulus or MS-related autoantigens. We identify CX(3)CR1, the fractalkine receptor, as a selective marker to discriminate CD4(+)CD28(-) T cells from their CD4(+)CD28(+) counterparts. CX(3)CR1 expression enables CD4(+)CD28(-) T cells to migrate towards a fractalkine gradient in vitro. In addition, we find increased levels of fractalkine in the cerebrospinal fluid and inflammatory lesions of MS patients. We demonstrate for the first time that CD4(+)CD28(-) T cells accumulate in MS lesions of a subgroup of patients. Moreover, we have indications that these cells are cytotoxic in the target tissue. Overall, our findings suggest that CD4(+)CD28(-) T cells migrate in response to a chemotactic gradient of fractalkine to sites of inflammation, where they contribute to the inflammatory processes in a subgroup of patients with MS and RA. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available