4.2 Article Proceedings Paper

Variability of planetary waves as a signature of possible climatic changes

Journal

JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS
Volume 71, Issue 14-15, Pages 1529-1539

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jastp.2009.05.011

Keywords

Planetary wave; Climatic variability; Middle atmosphere; Stratospheric vacillations; Normal atmospheric modes

Ask authors/readers for more resources

The long-term variability of stationary and traveling planetary waves in the lower stratosphere has been investigated using the data of NCEP/NCAR reanalysis. The results obtained show that during the last decades winter-mean amplitude of the stationary planetary wave with zonal wave number 1 (SPW1) increases at the higher middle latitudes of the Northern Hemisphere. It has been suggested that the observed increase in the SPW1 amplitude should be accompanied by the growth in the magnitude of the stratospheric vacillations. The analysis of the SPW1 behavior in the NCEP/NCAR data set supports this suggestion and shows a noticeable increase with time in the SPW1 intra-seasonal variability. The amplitudes of the long-period normal atmospheric modes, the so-called 5, 10- and 16-day waves, diminish. It is supposed that one of the possible reasons for this decrease can be a growth of radiative damping rate caused, for instance, by the increase of CO2. To investigate a possible climatic change of the middle atmosphere dynamics caused by observed changes in the tropospheric temperature, two sets of runs (using zonally averaged temperature distributions in the troposphere typical for January 1960 and 2000) with the middle and upper atmosphere model (MUAM) have been performed. The results obtained show that on average the calculated amplitude of the SPW1 in the stratosphere increased in 2000 and there is also an increase of its intra-seasonal variability conditioned by nonlinear interaction with the mean flow. This increase in the amplitudes of stratospheric vacillations during the last four decades allows us to suggest that stratospheric dynamics becomes more stochastic. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available