4.3 Article

Ground Clutter as a Monitor of Radar Stability at Kwajalein, RMI

Journal

JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY
Volume 25, Issue 11, Pages 2037-2045

Publisher

AMER METEOROLOGICAL SOC
DOI: 10.1175/2008JTECHA1063.1

Keywords

-

Funding

  1. NASA [NNG07EJ50C]

Ask authors/readers for more resources

There are many applications in which the absolute and day-to-day calibrations of radar sensitivity are necessary. This is particularly so in the case of quantitative radar measurements of precipitation. While fine calibrations may be made periodically by a variety of techniques such as the use of antenna ranges, standard targets, and solar radiation, knowledge of variations that occur between such checks is required to maintain the accuracy of the data. This paper presents a method for this purpose using the radar on Kwajalein Atoll to provide a baseline calibration for the control of measurements of rainfall made by the Tropical Rainfall Measuring Mission (TRMM). The method uses echoes from a multiplicity of ground targets. The daily average clutter echoes at the lowest elevation scan have been found to be remarkably stable from hour to hour, day to day, and month to month within better than +/- 1 dB. They vary significantly only after either deliberate system modifications, equipment failure, or other unknown causes. A cumulative distribution function (CDF) of combined precipitation and clutter reflectivity (Ze in dBZ) is obtained on a daily basis, regardless of whether or not rain occurs over the clutter areas. The technique performs successfully if the average daily area mean precipitation echoes (over the area of the clutter echoes) do not exceed 45 dBZ, a condition that is satisfied in most locales. In comparison, reflectivities associated with the most intense clutter echoes can approach 70 dBZ. Thus, the level at which the CDF reaches 95% is affected only by the clutter and reflects variations only in the radar sensitivity. Daily calculations of the CDFs have recently been made beginning with August 1999 data and are used to correct 7.5 yr of measurements, thus enhancing the integrity of the global record of precipitation observed by TRMM. The method is robust and may be applicable to other ground-based radars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available