4.3 Article

Dynamic Valgus Alignment and Functional Strength in Males and Females During Maturation

Journal

JOURNAL OF ATHLETIC TRAINING
Volume 44, Issue 1, Pages 26-32

Publisher

NATL ATHLETIC TRAINERS ASSOC INC
DOI: 10.4085/1062-6050-44.1.26

Keywords

triple-hop test; knee valgus; sex differences

Categories

Ask authors/readers for more resources

Context: Sex differences in dynamic measures have been established in physically mature populations. Gaining information on maturation's effect on dynamic performance measures implicated in injury risk may enable us to better design injury prevention programs. Objective: To examine sex differences in dynamic valgus alignment and triple-hop distance measures across maturational stages in males and females. A secondary purpose was to determine if a field test of strength and power predicts dynamic valgus alignment. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: 157 young athletes (78 females, 79 males) aged 9 to 18 years. Intervention(s): Subjects performed drop-jump landings and single-leg triple-hop tests as part of a broader injury screening. Main Outcome Measure(s): Maturational status was ascertained from self-report questionnaires and grouped according to Tanner stages 1 and 2 (MatGrp1), 3 and 4 (MatGrp2), and 5 (MatGrp3). Frontal-plane knee valgus displacement, which served as a measure of dynamic valgus alignment, and single-leg triple-hop distance were assessed. Results: Males demonstrated less dynamic valgus alignment during drop jumps in the latter maturational stages (MatGrp1 = 13.1 degrees +/- 8.7 degrees, MatGrp2 = 9.0 degrees +/- 6.2 degrees, MatGrp3 = 9.2 degrees +/- 9.4 degrees), whereas females increased dynamic valgus alignment throughout maturation (MatGrp1 = 11.5 degrees +/- 6.9 degrees, MatGrp2 = 12.8 degrees +/- 8.8 degrees MatGrp3 = 15.5 degrees +/- 8.7 degrees). Thus, in the more mature groups, males had less dynamic valgus alignment than females. Both males (MatGrp1 = 393.5 +/- 63.7 cm, MatGrp2 = 491.8 +/- 95.1 cm, MatGrp3 = 559.3 +/- 76.3 cm) and females (MatGrp1 = 360.3 +/- 37.1 cm, MatGrp2 = 380.1 +/- 44.3 cm, MatGrp3 = 440.0 +/- 66.2 cm) increased triple-hop distance, but males increased more. Within each subgroup of MatGrp and sex, triple-hop distance had no predictive ability for dynamic malalignment. Conclusions: When dynamic valgus alignment and strength were assessed, sex and maturational status displayed an interaction. However, functional strength did not predict degree of dynamic valgus alignment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available