4.6 Article

Dissolution kinetics and biodurability of tremolite particles in mimicked lung fluids: Effect of citrate and oxalate

Journal

JOURNAL OF ASIAN EARTH SCIENCES
Volume 77, Issue -, Pages 318-326

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jseaes.2013.04.008

Keywords

Tremolite; Dissolution rate; Oxalate; Citrate; Biodurability

Funding

  1. Junta de Andalucia [P07-RNM-02772]
  2. Group RNM-264
  3. JAE-Doc from CSIC
  4. FEDER

Ask authors/readers for more resources

The effect of citrate and oxalate on tremolite dissolution rate was measured at 37 degrees C in non-stirred flow-through reactors, using modified Gamble's solutions at pH 4 (macrophages), 7.4 (interstitial fluids) and 5.5 (intermediate check point) containing 0, 0.15, 1.5 and 15 mmol L-1 of citrate or oxalate. The dissolution rates calculated from Si concentration in the output solutions without organic ligands depend on pH, decreasing when the pH increases from -13.00 (pH 4) to -13.35 (pH 7.4) mol g(-1) s(-1) and following a proton-promoted mechanism. The presence of both ligands enhances dissolution rates at every pH, increasing this effect when the ligand concentration increases. Citrate produces a stronger effect as a catalyst than oxalate, mainly at more acidic pHs and enhances dissolution rates until 20 times for solutions with 15 mmol L-1 citrate. However, at pH 7.4 the effect is lighter and oxalate solutions (15 mmol L-1) only enhances dissolution rates eight times respect to free organic ligand solutions. Dissolution is promoted by the attack to protons and organic ligands to the tremolite surface. Magnesium speciation in oxalate and citrate solutions shows that Mg citrate complexes are more effective than oxalate ones during the alteration of tremolite in magrophages, but this tendency is the opposite for interstitial fluids, being oxalate magnesium complexes stronger. The biodurability estimations show that the destruction of the fibers is faster in acidic conditions (macrophages) than in the neutral solutions (interstitial fluid). At pH 4, both ligands oxalate and citrate reduce the residence time of the fibers with respect to that calculated in absence of ligands. Nevertheless, at pH 7.4 the presence of ligands does not reduce significantly the lifetime of the fibers. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available