4.6 Article

K-Ar age and geochemistry of the SW Japan Paleogene cauldron cluster: Implications for Eocene-Oligocene thermo-tectonic reactivation

Journal

JOURNAL OF ASIAN EARTH SCIENCES
Volume 40, Issue 2, Pages 509-533

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jseaes.2010.10.002

Keywords

K-Ar ages; Sr-Nd isotopes; Paleogene; Cauldron; Rifting; High-Mg andesite; Adakite

Funding

  1. Ministry of Education, Science and Culture, Japan [04640706]
  2. Grants-in-Aid for Scientific Research [04640706] Funding Source: KAKEN

Ask authors/readers for more resources

Systematic K-Ar dating and geochemical analyses of Paleogene cauldrons in the Sanin Belt of SW Japan have been made to explore the relationship between the timing of their formation and the Paleogene subduction history of SW Japan documented in the Shimanto accretionary complex. We also examine the magma sources and tectonics beneath the backarc region of SW Japan at the eastern plate boundary of Eurasia. Fifty-eight new K-Ar ages and 19 previously reported radiometric age data show that the cauldrons formed during Middle Eocene to Early Oligocene time (43-30 Ma), following a period of magmatic hiatus from 52 to 43 Ma. The hiatus coincides with absence of an accretionary prism in the Shimanto Belt. Resumption of the magmatism that formed the cauldron cluster in the backarc was concurrent with voluminous influx of terrigenous detritus to the trench, as a common tectono-thermal event within a subduction system. The cauldrons are composed of medium-K calc-alkaline basalts to rhyolites and their plutonic equivalents. These rocks are characterized by lower concentrations of large ion lithophile elements (LILE) including K2O, Ba, Rb, Th, U and Li, lower (La/Yb)(n) ratios, lower initial Sr isotopic ratios (0.7037-0.7052) and higher epsilon(Nd)(T) values (-0.5 to +3.5) relative to Late Cretaceous to Early Paleogene equivalents. There are clear trends from enriched to depleted signatures with decreasing age, from the Late Cretaceous to the Paleogene. The same isotopic shift is also confirmed in lower crust-derived xenoliths, and is interpreted as mobilization of pre-existing enriched lithospheric mantle by upwelling depleted asthenosphere. Relatively elevated geothermal gradients are presumed to have prevailed over wide areas of the backarc and forearc of the SW Japan arc-trench system during the Eocene to Oligocene. Newly identified Late Eocene low silica adakites and high-Mg andesites in the Sanin Belt and Early Eocene A-type granites in the SW Korea Peninsula probably formed due to upwelling of hot asthenosphere and subduction of a young plate. The backarc region was an extensional tectonic setting, and some Paleogene rift basins and Sanin Belt cauldrons occur in linear arrays. The Eocene-Oligocene Sanin-SE Korea continental arc lies on the NE extension of the East China Sea Basin, the initial stage of which probably formed by continental arc rifting. This rifting may have been triggered by upwelling of hot asthenosphere into the wedge space created by rollback of the subducted slab, in response to decreased convergence rate between the Pacific and Eurasian plates. (C) 2010 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available