4.8 Article

Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide

Journal

NATURE PHYSICS
Volume 11, Issue 9, Pages 748-+

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NPHYS3437

Keywords

-

Funding

  1. Gordon and Betty Moore Foundations EPiQS Initiative [GBMF4547]
  2. National Research Foundation, Prime Minister's Office, Singapore under its NRF fellowship (NRF) [NRF-NRFF2013-03]
  3. National Basic Research Program of China [2013CB921901, 2014CB239302]
  4. National Science Council, Taiwan
  5. CEM, an NSF MRSEC [DMR-1420451]
  6. US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering [DE AC02 07CH11358]
  7. US Department of Energy (DOE), Office of Science, Basic Energy Sciences [DE-FG02-07ER46352]
  8. NERSC Supercomputing Center through DOE [DE-AC02-05CH11231]
  9. [DE-FG-02-05ER46200]

Ask authors/readers for more resources

Three types of fermions play a fundamental role in our understanding of nature: Dirac, Majorana and Weyl. Whereas Dirac fermions have been known for decades, the latter two have not been observed as any fundamental particle in high-energy physics, and have emerged as a much-sought-out treasure in condensed matter physics. A Weyl semimetal is a novel crystal whose low-energy electronic excitations behave as Weyl fermions. It has received worldwide interest and is believed to open the next era of condensed matter physics after graphene and three-dimensional topological insulators. However, experimental research has been held back because Weyl semimetals are extremely rare in nature. Here, we present the experimental discovery of the Weyl semimetal state in an inversion-symmetry-breaking single-crystalline solid, niobium arsenide (NbAs). Utilizing the combination of soft X-ray and ultraviolet photoemission spectroscopy, we systematically study both the surface and bulk electronic structure of NbAs. We experimentally observe both the Weyl cones in the bulk and the Fermi arcs on the surface of this system. Our ARPES data, in agreement with our theoretical band structure calculations, identify the Weyl semimetal state in NbAs, which provides a real platform to test the potential of Weyltronics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available