4.5 Article

Novel synthetic protective compound, KR-22335, against cisplatin-induced auditory cell death

Journal

JOURNAL OF APPLIED TOXICOLOGY
Volume 34, Issue 2, Pages 191-204

Publisher

WILEY-BLACKWELL
DOI: 10.1002/jat.2852

Keywords

ototoxicity; cisplatin; apoptosis; hearing preservation; zebrafish

Categories

Funding

  1. Ministry of Health and Welfare, Republic of Korea [A100878]
  2. Korea Health Promotion Institute [A100878] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

Cisplatin [cis-diammine-dichloroplatinum (II)] is a widely used chemotherapeutic agent, and one of its most severe side effects is ototoxicity. In the course of developing a new protective agent against cisplatin-induced ototoxicity, we have been interested in a novel synthetic compound, 3-Amino-3-(4-fluoro-phenyl)-1H-quinoline-2,4-dione (KR-22335). We evaluated the effectiveness of KR-22335 as an otoprotective agent against cisplatin-induced toxicity. The otoprotective effect of KR-22335 against cisplatin was tested in vitro in cochlear organs of Corti-derived cell lines, HEI-OC1, and in vivo in a zebrafish (Danio rerio) model. Cisplatin-induced apoptosis, cell cycle arrest and an increase in intracellular reactive oxygen species (ROS) generation were demonstrated in HEI-OC1 cells. KR-22335 inhibited cisplatin-induced apoptosis and mitochondrial injury in HEI-OC1 cells. KR-22335 inhibited cisplatin-induced activation of JNK, p-38, caspase-3 and PARP in HEI-OC1 cells. Scanning and transmission electron micrographs showed that KR-22335 prevented cisplatin-induced destruction of kinocilium and stereocilia in zebrafish neuromasts. Tissue TUNEL of neuromasts in zebrafish demonstrated that KR-22335 blocked cisplatin-induced TUNEL positive hair cells in neuromasts. The results of this study suggest that KR-22335 may prevent ototoxicity caused by the administration of cisplatin through the inhibition of mitochondrial dysfunction and suppression of ROS generation. KR-22335 may be considered as a potential candidate for protective agents against cisplatin-induced ototoxicity. Copyright (c) 2013 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available