4.5 Article

Rat liver clone-9 cells in culture as a model for screening hepatotoxic potential of food-related products: hepatotoxicity of deoxynivalenol

Journal

JOURNAL OF APPLIED TOXICOLOGY
Volume 28, Issue 6, Pages 765-772

Publisher

WILEY
DOI: 10.1002/jat.1337

Keywords

hepatotoxicity; liver toxicity; hepatocytes; clone-9 cell line; deoxynivalenol; mycotoxin

Categories

Ask authors/readers for more resources

Deoxynivalenol (DON) is a mycotoxin food contaminant found in several cereal grains. The literature on the liver toxicity of DON in vivo is conflicting and does not clearly characterize its hepatotoxic effects. Cultured rat liver clone-9 cells were used as a model to assess the hepatotoxic potential of DON. The cell cultures, seeded onto 96-well plates, were treated at confluence with varying concentrations of DON (0-100 mu g ml(-1)) for 48 h at 37 degrees C in 5% CO2. After the treatment period, the cells were assayed for a number of hepatotoxic endpoints that included cytotoxicity, double-stranded DNA (ds-DNA) content, oxidative stress and mitochondrial function. The concentration-dependent toxicity of DON, as measured by cytotoxicity and ds-DNA content, was observed over the entire concentration range studied beginning at 0.5 mu g ml(-1). DON also induced a significant concentration-dependent increase in oxidative stress at DON concentrations starting at 10 mu g ml(-1). The mitochondrial function of the treated cells decreased with the increasing concentration of DON exposure, but it was not statistically different from that of the control value. Liver histopathology observed at 3, 24 and 72 h following a single intraperitoneal administration dose of DON (10 mg kg(-1) BW) to adult male rats is consistent with early mild hepatotoxicity. The overall results of this study suggest that acute DON exposure has early mild cytotoxic effects on hepatocytes in vivo that are expressed as severe effects in rat liver clone-9 cells in vitro. Published in 2008 by John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available