4.3 Article

Super-resolution mapping of hyperspectral images for estimating the water-spread area of Peechi reservoir, southern India

Journal

JOURNAL OF APPLIED REMOTE SENSING
Volume 8, Issue -, Pages -

Publisher

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.JRS.8.083510

Keywords

reservoir water-spread area; hyperspectral image; sub-pixel classification; super-resolution mapping

Ask authors/readers for more resources

Though the estimation of the water-spread area in reservoirs is often carried out by field surveys, it is time-consuming and tedious, and cannot be done periodically. To overcome this issue, satellite images are often used where the estimation is made through density slicing or conventional per-pixel classification. This results in an inaccurate estimation of reservoir capacity. The high cost and nonavailability of high-resolution images demands the use of an alternative approach that can give accurate information about the reservoir water-spread area. A hyperspectral image (Hyperion) of moderate resolution is used for the accurate estimation of the water-spread area of Peechi reservoir, southern India. The reservoir water-spread area obtained from per-pixel classification, subpixel classification, and super-resolution mapping approaches are compared with the water-spread area obtained from the ground truth hydrographic survey data. It is observed that the water-spread area estimated from the hyperspectral image by the per-pixel approach is 7.66 sq km, that by the subpixel approach is 6.34 sq km, and that by the super-resolution approach is 5.69 sq km compared to the actual area of 5.95 sq km. The classification accuracy estimated for the Hopfield neural network based super-resolution technique is 92.97%, whereas that for the conventional classifier (maximum likelihood) is 86.72%. This improved accuracy in classification resulted in an accurate estimation of water-spread area. Hence, it is inferred that super-resolution mapping applied to hyperspectral images is a computationally efficient approach for the accurate quantification of reservoir water-spread area. (C) 2014 Society of Photo-Optical Instrumentation Engineers (SPIE)

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available