4.8 Article

Infrared rectification in a nanoantenna-coupled metal-oxide-semiconductor tunnel diode

Journal

NATURE NANOTECHNOLOGY
Volume 10, Issue 12, Pages 1033-1038

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/NNANO.2015.216

Keywords

-

Funding

  1. Sandia's Laboratory Directed Research and Development program
  2. US Department of Defense
  3. US Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

Direct rectification of electromagnetic radiation is a well-established method for wireless power conversion in the microwave region of the spectrum, for which conversion efficiencies in excess of 84% have been demonstrated(1-6). Scaling to the infrared or optical part of the spectrum requires ultrafast rectification(7-10) that can only be obtained by direct tunnelling(11,12). Many research groups have looked to plasmonics to overcome antenna-scaling limits and to increase the confinement(10,13-21). Recently, surface plasmons on heavily doped Si surfaces were investigated as a way of extending surface-mode confinement to the thermal infrared region(22). Here we combine a nanostructured metallic surface with a heavily doped Si infrared-reflective ground plane designed to confine infrared radiation in an active electronic direct-conversion device. The interplay of strong infrared photon-phonon coupling and electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast electronic tunnelling in metal-oxidesemiconductor (MOS) structures. Infrared dispersion of SiO2 near a longitudinal optical (LO) phonon mode gives large transverse-field confinement in a nanometre-scale oxide-tunnel gap as the wavelength-dependent permittivity changes from 1 to 0, which leads to enhanced electromagnetic fields at material interfaces and a rectified displacement current that provides a direct conversion of infrared radiation into electric current. The spectral and electrical signatures of the nanoantenna-coupled tunnel diodes are examined under broadband black-body and quantum-cascade laser (QCL) illumination. In the region near the LO phonon resonance, we obtained a measured photoresponsivity of 2.7 mAW(-1) cm(-2) at -0.1 V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available