4.6 Article

Effect of Plasma Duty Cycle on Silver Nanoparticles Loading of Cotton Fabrics for Durable Antibacterial Properties

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 132, Issue 1, Pages -

Publisher

WILEY
DOI: 10.1002/app.41279

Keywords

biomaterials; coatings; functionalization of polymers; surfaces and interfaces; textiles

Ask authors/readers for more resources

A facile method for strongly anchoring silver nanoparticles (AgNPs) onto cotton fabrics was reported. It consists in loading AgNPs onto the cotton fiber preliminary coated with maleic anhydride plasma polymer layer. This results in hydrolyzis and ring opening of anhydride groups followed by electrovalent bonding of silver ions and reduction in NaBH4. X-ray photoelectron spectroscopy (XPS), infrared spectroscopy, and scanning electron microscope (SEM) were used to analyze changes in the surface chemical composition and morphology of the plasma modified fibers. The presence of AgNPs was confirmed by UV-Visible spectroscopy and atomic force microscopy (AFM) images. Remarkably, varying plasma duty cycle for plasma polymer deposition allowed tailoring the amount of loaded AgNPs. The highest amount of AgNPs was obtained with the lowest duty cycle values. Qualitative tests showed that silver containing plasma modified cotton displays significant antibacterial activity. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available