4.6 Article

Tailoring the Molecular and Thermo-Mechanical Properties of Kraft Lignin by Ultrafiltration

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 131, Issue 18, Pages -

Publisher

WILEY
DOI: 10.1002/app.40799

Keywords

biopolymers and renewable polymers; crosslinking; glass transition; rheology; thermal properties

Funding

  1. Swedish Institute [001-3053]

Ask authors/readers for more resources

This study has shown that ultrafiltration allows the selective extraction from industrial black liquors of lignin fraction with specific thermo-mechanical properties, which can be matched to the intended end uses. Ultrafiltration resulted in the efficient fractionation of kraft lignin according to its molecular weight, with an accumulation of sulfur-containing compounds in the low-molecular weight fractions. The obtained lignin samples had a varying quantities of functional groups, which correlated with their molecular weight with decreased molecular size, the lignin fractions had a higher amount of phenolic hydroxyl groups and fewer aliphatic hydroxyl groups. Depending on the molecular weight, glass-transition temperatures (T-g) between 70 and 170 degrees C were obtained for lignin samples isolated from the same batch of black liquor, a tendency confirmed by two independent methods, DSC, and dynamic rheology (DMA). The Fox-Flory equation adequately described the relationship between the number average molecular masses (M-n) and T-g's-irrespective of the method applied. DMA showed that low-molecular-weight lignin exhibits a good flow behavior as well as high-temperature crosslinking capability. Unfractionated and high molecular weight lignin (M-w > 5 kDa), on the other hand, do not soften sufficiently and may require additional modifications for use in thermal processings where melt-flow is required as the first step. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available