4.6 Article

An epoxy-ended hyperbranched polymer as a new modifier for toughening and reinforcing in epoxy resin

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 130, Issue 2, Pages 1064-1073

Publisher

WILEY
DOI: 10.1002/app.39257

Keywords

properties and characterization; resins; dendrimers; hyperbranched polymers and macrocycles; thermosets; synthesis and processing

Funding

  1. National Natural Science Foundation of China [2092023, 51173012]

Ask authors/readers for more resources

A new epoxy-ended hyperbranched polyether (HBPEE) with aromatic skeletons was synthesized through one-step proton transfer polymerization. The structure of HBPEE was confirmed by Fourier transform infrared spectroscopy (FTIR), and nuclear magnetic resonance (NMR) measurements. It was proved to be one high efficient modifier in toughening and reinforcing epoxy matrix. In particular, unlike most other hyperbranched modifiers, the glass transition temperature (Tg) was also increased. Compared with the neat DGEBA, the hybrid curing systems showed excellent balanced mechanical properties at 5 wt % HBPEE loading. The great improvements were attributed to the increased cross-linking density, rigid skeletons, and the molecule-scale cavities brought by the reactive HBPEE, which were confirmed by dynamical mechanical analysis (DMA) and thermal mechanical analysis (TMA). Furthermore, because of the reactivity of HBPEE, the hybrids inclined to form a homogenous system after the curing. DMA and scanning electron microscopy (SEM) results revealed that no phase separation occurred in the DGEBA/HBPEE hybrids after the introduction of reactive HBPEE. SEM also confirmed that the addition of HBPEE could enhance the toughness of epoxy materials as evident from fibril formation. (C) 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1064-1073, 2013

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available