4.6 Article

Electrospinning of solvent-resistant nanofibers based on poly(acrylonitrile-co-glycidyl methacrylate)

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 126, Issue 1, Pages 136-142

Publisher

WILEY-BLACKWELL
DOI: 10.1002/app.34748

Keywords

electrospinning; crosslinking; solvent resistance; poly(acrylonitrile-co-glycidyl methacrylate); PANGMA

Funding

  1. DAAD-HGF

Ask authors/readers for more resources

This article reports on the preparation of novel solvent-resistant nanofibers by electrospinning of poly(acrylonitrile-co-glycidyl methacrylate) (PANGMA) and subsequent chemical crosslinking. PANGMA nanofibers with diameters ranging from 200 to 600 nm were generated by electrospinning different solutions of PANGMA dissolved in N,N-dimethylformamide. Different additives were added to reduce the fiber diameter and improve the morphology of the nanofibers. The as-spun PANGMA nanofibers were crosslinked with 27 wt % aqueous ammonia solution at 50 degrees C for 3 h to gain the solvent resistance. Swelling tests indicated that the crosslinked nanofibers swelled in several solvents but were not dissolved. The weight loss of all the crosslinked nanofibrous mats immersed in solvents for more than 72 h was very low. The characterization by electron microscopy revealed that the nanofibrous mats maintained their structure. This was also confirmed by the results of the pore size measurements. These novel nanofibers are considered to have a great potential as supports for the immobilization of homogeneous catalysts and enzymes. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available