4.6 Article

Preparation and characterization of chemically modified Jute-Coir hybrid fiber reinforced epoxy novolac composites

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 125, Issue 4, Pages 3038-3049

Publisher

WILEY
DOI: 10.1002/app.36610

Keywords

composites; biofibers; mechanical and thermal properties; structure-property relations; dynamic mechanical Analysis

Ask authors/readers for more resources

In this study, the effects of fiber surface modification and hybrid fiber composition on the properties of the composites is presented. Jute fibers are cellulose rich (>65%) modified by alkali treatment, while the lignin rich (>40%) coconut coir fibers consist in creating quinones by oxidation with sodium chlorite in the lignin portions of fiber and react them with furfuryl alcohol (FA) to create a coating around the fiber more compatible with the epoxy resins used to prepare polymer composites. The maximum improvement on the properties was achieved for the hybrid composite containing the jutecoir content of 50 : 50. The tensile and flexural strength are recorded as 25 and 63 MPa at modified coir fiber content of 50 vol %, respectively, which are 78% and 61% higher than those obtained for unmodified fiber reinforced composites, i.e., tensile and flexural strength are 14 and 39 MPa, respectively. The reinforcement of the modified fiber was significantly enhanced the thermal stability of the composites. SEM features correlated satisfactorily with the mechanical properties of modified fiber reinforced hybrid composites. SEM analysis and water absorption measurements have confirmed the FA-grafting and shown a better compatibility at the interface between chemically modified fiber bundles and epoxy novolac resin. HailwoodHorrobin model was used to predict the moisture sorption behavior of the hybrid composite systems. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available