4.6 Article

Properties and Thermal Degradation Kinetics of Polystyrene/Organoclay Nanocomposites Synthesized by Solvent Blending Method: Effect of Processing Conditions and Organoclay Loading

Journal

JOURNAL OF APPLIED POLYMER SCIENCE
Volume 120, Issue 3, Pages 1322-1336

Publisher

WILEY
DOI: 10.1002/app.33179

Keywords

polystyrene; organoclay; nanocomposites; solvent blending; thermal stability

Ask authors/readers for more resources

In this study, intercalated/exfoliated polystyrene (PS)/organoclay nanocomposites containing different concentration of organoclay have been prepared via solvent blending method, using xylene as a solvent. Some resulting intercalated nanocomposites are transformed to exfoliated nanocomposites by increasing the refluxing temperature or refluxing time for a constant organoclay loading. The X-ray diffraction results reveal the formation of intercalation/exfoliation of organoclay in the PS matrix. The Fourier transform infrared spectroscopy and transmission electron microscopy results confirm the presence of nanomaterial in PS/organoclay nanocomposites. Completely exfoliated nanocomposites are achieved by decreasing the content of organoclay and elongating the refluxing temperature or refluxing time. Thermogravimetric analysis data show that the PS/organoclay nanocomposites have significant enhanced thermal stability. When 50% weight loss is selected as a point of comparison, the thermal decomposition temperature (T-d) of the exfoliated PS/organoclay nano-composites with 7 wt % of organoclay is 17 degrees C higher than that of pure PS. Thermal decomposition temperature of exfoliated PS/organoclay nanocomposites is better than that of intercalated nanocomposites for a constant organoclay loading. The glass transition temperature (T-g) of PS/organoclay nanocomposites is similar to 7.1-8.6 degrees C higher than that of pure PS. The thermal degradation activation energy of the nanocomposites is determined via Coats-Redfern method. The improvement of thermal stability of nanocomposites is also confirmed by increasing the activation energies (E-a) and the integral procedural decomposition temperature. Criado method is finally used to determine the degradation reaction mechanism of various samples. The water uptake capacity of PS/organoclay nanocomposites is negligible when compared with pure PS. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 1322-1336, 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available