4.5 Article

Rapid upregulation and clearance of distinct circulating microRNAs after prolonged aerobic exercise

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 116, Issue 5, Pages 522-531

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01141.2013

Keywords

circulating microRNA; exercise physiology; cardiovascular biomarker; cardiorespiratory fitness biomarker; prolonged aerobic exercise

Funding

  1. American Heart Association
  2. National Heart, Lung, and Blood Institute [HL-096834]
  3. McArthur-Radovsky, Lerner, Harris, and Watkins Funds
  4. Pulmonary Hypertension Association
  5. Gilead Research Scholars Fund

Ask authors/readers for more resources

Short nonprotein coding RNA molecules, known as microRNAs (miRNAs), are intracellular mediators of adaptive processes, including muscle hypertrophy, contractile force generation, and inflammation. During basal conditions and tissue injury, miRNAs are released into the bloodstream as circulating miRNAs (c-miRNAs). To date, the impact of extended-duration, submaximal aerobic exercise on plasma concentrations of c-miRNAs remains incompletely characterized. We hypothesized that specific c-miRNAs are differentially upregulated following prolonged aerobic exercise. To test this hypothesis, we measured concentrations of c-miRNAs enriched in muscle (miR-1, miR-133a, miR-499-5p), cardiac tissue (miR-208a), and the vascular endothelium (miR-126), as well as those important in inflammation (miR-146a) in healthy male marathon runners (N = 21) at rest, immediately after a marathon (42-km foot race), and 24 h after the race. In addition, we compared c-miRNA profiles to those of conventional protein biomarkers reflective of skeletal muscle damage, cardiac stress and necrosis, and systemic inflammation. Candidate c-miRNAs increased immediately after the marathon and declined to prerace levels or lower after 24 h of race completion. However, the magnitude of change for each c-miRNA differed, even when originating from the same tissue type. In contrast, traditional biomarkers increased after exercise but remained elevated 24 h postexercise. Thus c-miRNAs respond differentially to prolonged exercise, suggesting the existence of specific mechanisms of c-miRNA release and clearance not fully explained by generalized cellular injury. Furthermore, c-miRNA expression patterns differ in a temporal fashion from corollary conventional tissue-specific biomarkers, emphasizing the potential of c-miRNAs as unique, real-time markers of exercise-induced tissue adaptation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available