4.5 Article

New insights on contraction efficiency in patients with Duchenne muscular dystrophy

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 117, Issue 6, Pages 658-662

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00544.2014

Keywords

myopathy; force; ultrasound; electromechanical delay

Funding

  1. European Regional Development Fund [37400]
  2. French Muscular Dystrophy association [14597]
  3. Region des Pays de la Loire

Ask authors/readers for more resources

The decrease in muscle strength in patients with Duchenne muscular dystrophy (DMD) is mainly explained by a decrease in the number of active contractile elements. Nevertheless, it is possible that other electrochemical and force transmission processes may contribute. The present study aimed to quantify the effect of DMD on the relative contribution of electrochemical and force transmission components of the electromechanical delay (i.e., time lag between the onset of muscle activation and force production) in humans using very high frame rate ultrasound. Fourteen patients with DMD and thirteen control subjects underwent two electrically evoked contractions of the biceps brachii with the ultrasound probe over the muscle belly. The electromechanical delay was significantly longer in DMD patients compared with controls (18.5 +/- 3.9 vs. 12.5 +/- 1.4 ms, P < 0.0001). More precisely, DMD patients exhibited a longer delay between the onset of muscle fascicles motion and force production (13.6 +/- 3.1 vs. 7.9 +/- 2.0 ms, P < 0.0001). This delay was correlated to the chronological age of the DMD patients (r = 0.66; P = 0.01), but not of the controls (r = -0.45; P = 0.10). No significant difference was found for the delay between the onset of muscle stimulation and the onset of muscle fascicle motion. These results highlight the role of the alteration of muscle force transmission (delay between the onset of fascicle motion and force production) in the impairments of the contraction efficiency in patients with DMD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available