4.5 Article

Effect of exercise training on nitric oxide and superoxide/H2O2 signaling pathways in collateral-dependent porcine coronary arterioles

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 112, Issue 9, Pages 1546-1555

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01248.2011

Keywords

chronic coronary occlusion; ischemic heart disease; hydrogen peroxide

Funding

  1. National Institutes of Health [R01-HL-064931, R01-GM-046441]

Ask authors/readers for more resources

Xie W, Parker JL, Heaps CL. Effect of exercise training on nitric oxide and superoxide/H2O2 signaling pathways in collateral-dependent porcine coronary arterioles. J Appl Physiol 112: 1546-1555, 2012. First published February 9, 2012; doi:10.1152/japplphysiol.01248.2011.-Endothelial nitric oxide (NO) synthase (NOS) has been shown to contribute to enhanced vascular function after exercise training. Recent studies have revealed that relatively low concentrations of reactive oxygen species can contribute to endothelium-dependent vasodilation under physiological conditions. We tested the hypothesis that exercise training enhances endothelial function via endothelium-derived vasodilators, NO and superoxide/H2O2, in the underlying setting of chronic coronary artery occlusion. An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. At 8 wk postoperatively, pigs were randomly assigned to sedentary (pen-confined) or exercise-training (treadmill-run: 5 days/wk for 14 wk) regimens. Exercise training significantly enhanced concentration-dependent, bradykinin-mediated dilation in cannulated collateral-dependent arterioles (similar to 130 mu m diameter) compared with sedentary pigs. NOS inhibition reversed training-enhanced dilation at low bradykinin concentrations in collateral-dependent arterioles, although increased dilation persisted at higher bradykinin concentrations. Total and phosphorylated (Ser(1179)) endothelial NOS protein levels were significantly increased in arterioles from collateral-dependent compared with the nonoccluded region, independent of exercise. The H2O2 scavenger polyethylene glycol-catalase abolished the training-enhanced bradykinin-mediated dilation in collateral-dependent arterioles; similar results were observed with the SOD inhibitor diethyldithiocarbamate. Fluorescence measures of bradykinin-stimulated H2O2 levels were significantly increased by exercise training, independent of occlusion. The NADPH inhibitor apocynin significantly attenuated bradykinin-mediated dilation in arterioles of exercise-trained, but not sedentary, pigs and was associated with significantly increased protein levels of the NADPH subunit p67phox. These data provide evidence that, in addition to NO, the superoxide/H2O2 signaling pathway significantly contributes to exercise training-enhanced endothelium-mediated dilation in collateral-dependent coronary arterioles.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available