4.5 Article

Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 111, Issue 1, Pages 185-191

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00126.2011

Keywords

growth differentiating factor-8; permeabilized muscle fiber contractility; atrogin-1; muscle atrophy F-box

Funding

  1. National Institute of Arthritis and Musculoskeletal and Skin Diseases [AR058920, AR055624]

Ask authors/readers for more resources

Mendias CL, Kayupov E, Bradley JR, Brooks SV, Claflin DR. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. J Appl Physiol 111: 185-191, 2011. First published May 12, 2011; doi: 10.1152/japplphysiol.00126.2011.-Myostatin (MSTN) is a member of the transforming growth factor-beta superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN+/+ mice, the extensor digitorum longus muscles of MSTN+/+ mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (F-o), but decreased specific maximum isometric force (sF(o); Fo normalized by muscle cross-sectional area). The reason for the reduction in sFo was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN+/+ mice have a greater Fo, but no difference in sFo, and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN+/+ mice have a greater cross-sectional area, but do not have a greater Fo and have a sFo that is significantly lower than fibers from MSTN+/+ mice. The extensor digitorum longus muscles from MSTN+/+ mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available