4.5 Article

Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 106, Issue 4, Pages 1119-1124

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.90368.2008

Keywords

training; sex; strength; hypertrophy; magnetic resonance spectroscopy

Funding

  1. Hokusho University Northern Regions Lifelong Sports Research Center (SPOR)

Ask authors/readers for more resources

Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, Takada S, Takahashi T, Omokawa M, Kinugawa S, Tsutsui H. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol 106: 1119-1124, 2009. First published February 12, 2009; doi:10.1152/japplphysiol.90368.2008.-Although recent studies have reported that low-intensity resistance training with blood flow restriction could stress the muscle effectively and provide rapid muscle hypertrophy and strength gain equivalent to those of high-intensity resistance training, the exact mechanism and its generality have not yet been clarified. We investigated the intramuscular metabolism during low-intensity resistance exercise with blood flow restriction and compared it with that of high-intensity and low-intensity resistance exercises without blood flow restriction using P-31-magnetic resonance spectroscopy. Twenty-six healthy subjects (22 +/- 4 yr) participated and performed unilateral plantar flexion (30 repetitions/min) for 2 min. Protocols were as follows: low-intensity exercise (L) using a load of 20% of one-repetition maximum (1 RM), L with blood flow restriction (LR), and high-intensity exercise using 65% 1 RM (H). Intramuscular phosphocreatine (PCr) and diprotonated phosphate (H2PO4-) levels and intramuscular pH at rest and during exercise were obtained. We found that the PCr depletion, the H2PO4- increase, and the intramuscular pH decrease during LR were significantly greater than those in L (P < 0.001); however, those in LR were significantly lower than those in H (P < 0.001). The recruitment of fast-twitch fiber evaluated by inorganic phosphate splitting occurred in only 31% of the subjects in LR, compared with 70% in H. In conclusion, the metabolic stress in skeletal muscle during low-intensity resistance exercise was significantly increased by applying blood flow restriction, but did not generally reach that during high-intensity resistance exercise. This new method of resistance training needs to be examined for optimization of the protocol to reach equivalence with high-intensity resistance training.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available