4.5 Article

Nonselective NOS inhibition blunts the sweat response to exercise in a warm environment

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 106, Issue 3, Pages 796-803

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.90809.2008

Keywords

sudomotor; skin blood flow; temperature regulation; nitric oxide synthase

Funding

  1. National Heart, Lung, and Blood Institute [HL-39818]
  2. Mary Lou Fulton Fund in the College of Health and Human Performance at Brigham Young University

Ask authors/readers for more resources

Welch G, Foote KM, Hansen C, Mack GW. Nonselective NOS inhibition blunts the sweat response to exercise in a warm environment. J Appl Physiol 106: 796-803, 2009. First published January 8, 2009; doi:10.1152/japplphysiol. 90809.2008.-The role of nitric oxide synthase (NOS) inhibition in modulating human thermoregulatory control of sweating and cutaneous dilation was examined in 10 subjects (5 men and 5 women). Three intradermal microdialysis probes were placed in nonglabrous skin of the dorsum of the forearm. The control site was perfused with 0.9% saline, while the two remaining sites were perfused with a nonselective NOS inhibitor: 10 mM N-G-nitro-L-arginine (L-NAME) or 10 mM NG-monomethyl-Larginine (L-NMMA). Local sweat rate (SR) and skin blood flow (laser-Doppler velocimetry) were monitored directly over the path of the intradermal microdialysis probe while arterial blood pressure was measured in the opposite arm noninvasively. Thermoregulatory responses were induced by cycle ergometer exercise (60% peak oxygen consumption) in a warm environment (30 degrees C). Esophageal temperature increased 1.5 +/- 0.2 degrees C during the 30 min of exercise. The cutaneous dilator response between 5 and 30 min of exercise in the heat was attenuated by both 10 mM L-NAME and 10 mM L-NMMA (P < 0.05). However, 10 mM L-NAME was more effective in blunting the rise in cutaneous vascular conductance during exercise than L-NMMA (P < 0.05). NOS inhibition also reduced the rise in local SR between 10 and 30 min of exercise (P < 0.05). In this case, 10 mM L-NMMA was more effective in limiting the increase in local SR than 10 mM L-NAME (P < 0.05). We conclude that local production of nitric oxide in the skin or around the sweat gland augments local SR and cutaneous dilation during exercise in the heat.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available