4.5 Article

Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 107, Issue 6, Pages 1874-1883

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00443.2009

Keywords

motor cortex; transcranial magnetic stimulation; aging

Funding

  1. National Health and Medical Research Council of Australia [ID 453646]
  2. Brain Foundation South Australia

Ask authors/readers for more resources

Rogasch NC, Dartnall TJ, Cirillo J, Nordstrom MA, Semmler JG. Corticomotor plasticity and learning of a ballistic thumb training task are diminished in older adults. J Appl Physiol 107: 1874-1883, 2009. First published October 15, 2009; doi:10.1152/japplphysiol.00443.2009.-This study examined changes in corticomotor excitability and plasticity after a thumb abduction training task in young and old adults. Electromyographic (EMG) recordings were obtained from right abductor pollicis brevis (APB, target muscle) and abductor digiti minimi (ADM, control muscle) in 14 young (18-24 yr) and 14 old (61-82 yr) adults. The training task consisted of 300 ballistic abductions of the right thumb to maximize peak thumb abduction acceleration (TAAcc). Transcranial magnetic stimulation (TMS) of the left primary motor cortex was used to assess changes in APB and ADM motor evoked potentials (MEPs) and short-interval intracortical inhibition (SICI) before, immediately after, and 30 min after training. No differences in corticomotor excitability (resting and active TMS thresholds, MEP input-output curves) or SICI were observed in young and old adults before training. Motor training resulted in improvements in peak TAAcc in young (177% improvement, P < 0.001) and old (124%, P = 0.005) subjects, with greater improvements in young subjects (P = 0.002). Different thumb kinematics were observed during task performance, with increases in APB EMG related to improvements in peak TAAcc in young (r(2) = 0.46, P = 0.008) but not old (r(2) = 0.09, P = 0.3) adults. After training, APB MEPs were 50% larger (P < 0.001 compared with before) in young subjects, with no change after training in old subjects (P = 0.49), suggesting reduced use-dependent corticomotor plasticity with advancing age. These changes were specific to APB, because no training-related change in MEP amplitude was observed in ADM. No significant association was observed between change in APB MEP and improvement in TAAcc with training in individual young and old subjects. SICI remained unchanged after training in both groups, suggesting that it was not responsible for the diminished use-dependent corticomotor plasticity for this task in older adults.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available