4.5 Article

Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 104, Issue 4, Pages 1045-1055

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01195.2007

Keywords

human; substrate utilization; gene expression

Ask authors/readers for more resources

Skeletal muscle gene response to exercise depends on nutritional status during and after exercise, but it is unknown whether muscle adaptations to endurance training are affected by nutritional status during training sessions. Therefore, this study investigated the effect of an endurance training program (6 wk, 3 day/wk, 1-2 h, 75% of peak (V) over dot O-2) in moderately active males. They trained in the fasted (F; n = 10) or carbohydratefed state (CHO; n = 10) while receiving a standardized diet [65 percent of total energy intake (En) from carbohydrates, 20% En fat, 15% En protein]. Before and after the training period, substrate use during a 2-h exercise bout was determined. During these experimental sessions, all subjects were in a fed condition and received extra carbohydrates (1 g.kg body wt(-1) . h(-1)). Peak (V) over dot O-2 (+7%), succinate dehydrogenase activity, GLUT4, and hexokinase II content were similarly increased between F and CHO. Fatty acid binding protein (FABPm) content increased significantly in F (P = 0.007). Intramyocellular triglyceride content (IMCL) remained unchanged in both groups. After training, pre-exercise glycogen content was higher in CHO (545 +/- 19 mmol/ kg dry wt; P = 0.02), but not in F (434 +/- 32 mmol/ kg dry wt; P = 0.23). For a given initial glycogen content, F blunted exercise-induced glycogen breakdown when compared with CHO (P = 0.04). Neither IMCL breakdown (P = 0.23) nor fat oxidation rates during exercise were altered by training. Thus short-term training elicits similar adaptations in peak (V) over dot O-2 whether carried out in the fasted or carbohydrate-fed state. Although there was a decrease in exercise-induced glycogen breakdown and an increase in proteins involved in fat handling after fasting training, fat oxidation during exercise with carbohydrate intake was not changed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available