4.5 Article

Differential effects of chronic hypoxia and intermittent hypocapnic and eucapnic hypoxia on pulmonary vasoreactivity

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 104, Issue 1, Pages 110-118

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00698.2005

Keywords

sleep apnea; pulmonary hypertension; ionomycin; U-46619; endothelial nitric oxide synthase; vascular remodeling; right ventricular hypertrophy

Funding

  1. NATIONAL CENTER FOR RESEARCH RESOURCES [P20RR016480] Funding Source: NIH RePORTER
  2. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL058124, R01HL063207, R01HL082799, R01HL077876] Funding Source: NIH RePORTER
  3. NCRR NIH HHS [RR-16480] Funding Source: Medline
  4. NHLBI NIH HHS [HL-58124, HL-07736, HL-77876, HL-63207, R01 HL082799] Funding Source: Medline

Ask authors/readers for more resources

Intermittent hypoxia (IH) resulting from sleep apnea can lead to pulmonary hypertension (PH) and right heart failure, similar to chronic sustained hypoxia (CH). Supplemental CO2, however, attenuates hypoxic PH. We therefore hypothesized that, similar to CH, IH elicits PH and associated increases in arterial endothelial nitric oxide synthase (eNOS) expression, ionomycin-dependent vasodilation, and receptor-mediated pulmonary vasoconstriction. We further hypothesized that supplemental CO2 inhibits these responses to IH. To test these hypotheses, we measured eNOS expression by Western blot in intrapulmonary arteries from CH (2 wk, 0.5 atm), hypocapnic IH (H-IH) (3 min cycles of 5% O-2/ air flush, 7 h/day, 2 wk), and eucapnic IH (E-IH) (3 min cycles of 5% O-2, 5% CO2/air flush, 7 h/day, 2 wk) rats and their respective controls. Furthermore, vasodilatory responses to the calcium ionophore ionomycin and vasoconstrictor responses to the thromboxane mimetic U-46619 were measured in isolated saline-perfused lungs from each group. Hematocrit, arterial wall thickness, and right ventricle-to-total ventricle weight ratios were additionally assessed as indexes of polycythemia, arterial remodeling, and PH, respectively. Consistent with our hypotheses, E-IH resulted in attenuated polycythemia, arterial remodeling, RV hypertrophy, and eNOS upregulation compared with H-IH. However, in contrast to CH, neither H-IH nor E-IH increased ionomycin-dependent vasodilation. Furthermore, H-IH and E-IH similarly augmented U-46619-induced pulmonary vasoconstriction but to a lesser degree than CH. We conclude that maintenance of eucapnia decreases IH-induced PH and upregulation of arterial eNOS. In contrast, increases in pulmonary vasoconstrictor reactivity following H-IH are unaltered by exposure to supplemental CO2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available