4.6 Article

Role of strain on electronic and mechanical response of semiconducting transition-metal dichalcogenide monolayers: An ab-initio study

Journal

JOURNAL OF APPLIED PHYSICS
Volume 115, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4883995

Keywords

-

Funding

  1. US Department of Energy's National Nuclear Security Administration [DE-FC52-08NA28617]
  2. FAME Center, one of six centers of STARnet, a Semiconductor Research Corporation program - MARCO
  3. DARPA

Ask authors/readers for more resources

We characterize the electronic structure and elasticity of monolayer transition-metal dichalcogenides MX2 (M = Mo, W, Sn, Hf and X = S, Se, Te) based on 2H and 1T structures using fully relativistic first principles calculations based on density functional theory. We focus on the role of strain on the band structure and band alignment across the series of materials. We find that strain has a significant effect on the band gap; a biaxial strain of 1% decreases the band gap in the 2H structures, by as a much as 0.2 eV in MoS2 and WS2, while increasing it for the 1T cases. These results indicate that strain is a powerful avenue to modulate their properties; for example, strain enables the formation of, otherwise impossible, broken gap heterostructures within the 2H class. These calculations provide insight and quantitative information for the rational development of heterostructures based on this class of materials accounting for the effect of strain. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available