4.6 Article

The effects of the chemical composition and strain on the electronic properties of GaSb/InAs core-shell nanowires

Journal

JOURNAL OF APPLIED PHYSICS
Volume 116, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4894707

Keywords

-

Funding

  1. National Natural Science Foundation of China [11347022, 91227125]
  2. National Basic Research Program of China [2012CB932703, 2011CB606405]
  3. Hunan Provincial Natural Science Foundation of China [12JJ2002]
  4. Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics

Ask authors/readers for more resources

The effects of the chemical composition and strain on the electronic properties of [111] zinc-blende (ZB) and [0001] wurtzite (WZ) GaSb/InAs core-shell nanowires (NWs) with different core diameters and shell thicknesses are studied using first-principles methods. The band structures of the [111] ZB GaSb/InAs core-shell NWs underwent a noticeable type-I/II band alignment transition, associated with a direct-to-indirect band gap transition under a compressive uniaxial strain. The band structures of the [0001] WZ GaSb/InAs core-shell NWs preserved the direct band gap under either compressive or tensile uniaxial strains. In addition, the band gaps and the effective masses of the carriers could be tuned by their composition. For the core-shell NWs with a fixed GaSb-core size, the band gaps decreased linearly with an increasing InAs-shell thickness, caused by the significant downshift of the conduction bands. For the [111] ZB GaSb/InAs core-shell NWs, the calculated effective masses indicated that the transport properties could be changed from hole-dominated conduction to electron-dominated conduction by changing the InAs-shell thickness. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available