4.6 Article

Surface stoichiometry of pulsed ultraviolet laser treated polycrystalline CdTe

Journal

JOURNAL OF APPLIED PHYSICS
Volume 116, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4887079

Keywords

-

Funding

  1. Department of Energy through Bay Area Photovoltaic Consortium [DE-EE0004946]
  2. College of Engineering, Health Sciences Center, Office of the Vice President for Research
  3. Utah Science Technology and Research (USTAR) initiative of the State of Utah

Ask authors/readers for more resources

The effects of nanosecond pulsed ultraviolet laser annealing on the surface stoichiometry of close-space sublimated polycrystalline thin films are investigated using angle-resolved x-ray photoemission spectroscopy (XPS). The raw data suggest the formation of a Cd-rich surface layer, but this is counter to the expectation based on Cd and Te vapor pressures above CdTe that predicts a Te-rich layer and to direct observation of elemental Te at the surface. In order to explain this apparent discrepancy, we analyze our XPS data in the context of prior reports of lateral segregation of Cd and Te at the surface after pulsed laser treatments with a simple model of angular dependent XPS in the presence of surface roughness. This analysis reveals that a uniform Te layer cannot explain our results. Instead, our analysis suggests that Te enrichment occurs near grain boundaries and that a sub-monolayer Cd layer exists elsewhere. These complex yet repeatable results underscore the challenges in measuring surface stoichiometry to high precision on films relevant for polycrystalline CdTe devices. It also suggests that the Cd and Te vapor pressures above grain boundaries may differ from those above grain interiors and that ohmic contact may be made preferentially at the grain boundaries after pulsed laser annealing. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available