4.6 Article

Controllable fully spin-polarized transport in a ferromagnetically doped topological insulator junction

Journal

JOURNAL OF APPLIED PHYSICS
Volume 115, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4871683

Keywords

-

Funding

  1. National Natural Science Foundation of China [11274108, 11304203]
  2. Specialized Research Fund for the Doctoral Program of Higher Education of China [20114306110008]
  3. Scientific Research Fund of Hunan Provincial Education Department [13C533, 13B108]

Ask authors/readers for more resources

We investigate the energy band structure and the spin-dependent transport for a normal/ferromagnetic/normal two-dimension topological insulator (TI) junction. By diagonalizing Hamiltonian for the system, the band structure shows that the edge states on two sides are coupled resulting in a gap opening due to the transverse spatial confinement. Further, the exchange field induced by magnetic impurities can also modulate the band structure with two spin degenerate bands splitting. By using the nonequilibrium Green's function method, the dependence of spin-dependent conductance and spin-polarization on the Fermi energy, the exchange field strength and the ferromagnetic TI (FTI) length are also analyzed, respectively. Interestingly, the degenerate conductance plateaus for spin-up and -down channels are broken, and both the conductances are suppressed by magnetic impurities due to the time-reversal symmetry broken and inelastic scattering. The spin-dependent conductance shows different behaviors when the Fermi energy is tuned into different ranges. Moreover, the conductance can be fully spin polarized by tuning the Fermi energy and the exchange field strength, or by tuning the Fermi energy and the FTI length. Consequently, the junction can transform from a quantum spin Hall state to a quantum anomalous Hall state, which is very important to enable dissipationless charge current for designing perfect spin filter. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available