4.6 Article

Theoretical study on copper's energetics and magnetism in TiO2 polymorphs

Journal

JOURNAL OF APPLIED PHYSICS
Volume 113, Issue 23, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4811539

Keywords

-

Ask authors/readers for more resources

Density functional theory calculations were employed to model the electronic structure and the magnetic interactions in copper doped anatase and rutile titanium dioxide in order to shed light on the potential of these systems as magnetic oxides using different density functional schemes. In both polymorphs, copper dopant was found to be most stable in substitutional lattice positions. Ferromagnetism is predicted to be stable well above room temperature with long range interactions prevailing in the anatase phase while the rutile phase exhibits only short range superexchange interaction among nearest-neighbour Cu ions. Additionally, energetic evaluation of dopants in scattered and compact configurations reveals a dopant clustering tendency in anatase TiO2. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available