4.6 Article

First-principles study of stability and properties on β-SiC/TiC(111) interface

Journal

JOURNAL OF APPLIED PHYSICS
Volume 114, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4827837

Keywords

-

Funding

  1. Natural Science Foundation of China [51071122, 51271147]
  2. 111 Project of China [B08040]

Ask authors/readers for more resources

The interfacial properties of beta-SiC/TiC(111), such as work of adhesion, interface energy, fracture toughness, bonding nature, were investigated using first-principles calculations. Twenty four interface models with different terminations, carbon sublattice, and stacking sites were investigated. The thermodynamic stability of SiC/TiC(111) decreases as the order of C/C, Si/Ti, C/Ti, and Si/C terminations. The C/C-terminated top-site-stacked models (CCU3, CCT3) are most stable with the largest work of adhesion, smallest interface energy, and largest interfacial fracture toughness. The interfacial fracture toughness is predicted as 3.6 similar to 4.3MPa.m(1/2). The valence electron density and partial density of states indicate that the interfacial bonding is mainly contributed from covalent C-C interactions caused by the hybridization of C-2p. The interfacial Si-C and Ti-C bonds are less covalent and much weaker than the interior ones, and the interfacial bonds are more inclined to decompose. The carbon layer is likely to form on the interface due to the decomposition. Our calculation results are compared and in line with previous investigations. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available