4.6 Article

Operation of a titanium nitride superconducting microresonator detector in the nonlinear regime

Journal

JOURNAL OF APPLIED PHYSICS
Volume 113, Issue 10, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4794808

Keywords

-

Funding

  1. Keck Institute for Space Science
  2. Gordon and Betty Moore Foundation

Ask authors/readers for more resources

If driven sufficiently strongly, superconducting microresonators exhibit nonlinear behavior including response bifurcation. This behavior can arise from a variety of physical mechanisms including heating effects, grain boundaries or weak links, vortex penetration, or through the intrinsic nonlinearity of the kinetic inductance. Although microresonators used for photon detection are usually driven fairly hard in order to optimize their sensitivity, most experiments to date have not explored detector performance beyond the onset of bifurcation. Here, we present measurements of a lumped-element superconducting microresonator designed for use as a far-infrared detector and operated deep into the nonlinear regime. The 1 GHz resonator was fabricated from a 22 nm thick titanium nitride film with a critical temperature of 2K and a normal-state resistivity of 100 mu Omega cm. We measured the response of the device when illuminated with 6.4 pW optical loading using microwave readout powers that ranged from the low-power, linear regime to 18 dB beyond the onset of bifurcation. Over this entire range, the nonlinear behavior is well described by a nonlinear kinetic inductance. The best noise-equivalent power of 2 x 10(-16) W/Hz(1/2) at 10 Hz was measured at the highest readout power, and represents a similar to 10 fold improvement compared with operating below the onset of bifurcation. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4794808]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available