4.6 Article

Stacking fault expansion from basal plane dislocations converted into threading edge dislocations in 4H-SiC epilayers under high current stress

Journal

JOURNAL OF APPLIED PHYSICS
Volume 114, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4812590

Keywords

-

Funding

  1. NEDO project Novel Semiconductor Power Electronics Project Realizing Low Carbon-Emission Society

Ask authors/readers for more resources

We evaluate the stacking faults (SFs) expansion from basal plane dislocations (BPDs) converted into threading edge dislocations (TEDs) under the current stress to the pn devices and analyzed the nucleation site of the SF by combined polishing, chemical etching in molten KOH, photoluminescence imaging, Focus ion beam, transmission electron microscopy, and Time-of-Flight secondary ion mass spectrometer techniques. It was found that the formation of SFs occurs upon the current stress levels of 400 A/cm(2) where the diode area is not including BPDs in the drift layer after the high current stress, and the high current stress increases the SFs expansion density. It was also found the dependence of the junction temperature. The estimated activation energy for the expansion of SFs is Ea = 0.46 eV. The SF extends from the conversion point of the BPD into the TED within buffer layer. Even though BPDs converted into TEDs within the high doped buffer layer, SFs expand under high current stress. (C) 2013 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available