4.6 Article

Systematic study of interface trap and barrier inhomogeneities using I-V-T characteristics of Au/ZnO nanorods Schottky diode

Journal

JOURNAL OF APPLIED PHYSICS
Volume 113, Issue 23, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4810924

Keywords

-

Ask authors/readers for more resources

This paper presents in-depth analysis of I-V-T characteristics of Au/ZnO nanorods Schottky diodes. The temperature dependence I-V parameters such as the ideality factor and the barrier heights have been explained on the basis of inhomogeneity. Detailed and systematic analysis was performed to extract information about the interface trap states. The ideality factor decreases, while the barrier height increases with increase of temperature. These observations have been ascribed to barrier inhomogeneities at the Au/ZnO nanorods interface. The inhomogeneities can be described by the Gaussian distribution of barrier heights. The effect of tunneling, Fermi level pinning, and image force lowering has contribution in the barrier height lowering. The recombination-tunneling mechanism is used to explain the conduction process in Au/ZnO nanorods Schottky diodes. The ionization of interface states has been considered for explaining the inhomogeneities. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available